Proton electric polarizability

Electric polarizability: proton between charged parallel plates

Proton electric polarizability

Electric polarizability: proton between charged parallel plates

Theory for pion polarizability: QCD expansion in powers of quark field operators

Charged pion polarizability

$$\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha}{m_{\pi}F_{\pi}^{2}} \left(L_{9}^{r} - L_{10}^{r}\right)$$

$$\pi^0 \rightarrow \gamma \gamma$$

$$A_{\gamma\gamma} = \frac{\alpha N_C}{3\pi F_{\pi}}$$

Primex result:

$$\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.80 \text{ eV} \pm 2.8\%$$

Compton Scattering and the E.M. polarizabilities

Crossing symmetry (x \leftrightarrow t): Compton scattering \longleftrightarrow $\gamma\gamma \rightarrow \pi^+\pi^-$

$$\frac{d^2\sigma_{\text{Pr}\,\text{imakoff}}}{d\Omega dM} = \frac{2\alpha Z^2}{\pi^2} \frac{E_{\gamma}^4 \beta^2}{M} \frac{\sin^2 \theta}{Q^4} \left| F(Q^2) \right|^2 \left(1 + P_{\gamma} \cos 2\varphi_{\pi\pi} \right) \sigma(\gamma\gamma \to \pi\pi)$$

Pion Polarizability Measurements

Proposed Detector Setup

Electron energy	12.0 GeV	Peak polarization	76%
Electron current	50 nA on 20 μm diamond	Coherent/incoherent	0.32
Coherent peak	5.5-6.0 GeV	Target position	1 cm
Collimator	3.5 mm	Target	¹¹⁶ Sn, 5% RL

TRIGGER = FCAL, E_{th} = 250 MeV

Muon response in FCAL

$$E_{\mu 1} + E_{\mu 2} = 5.5 \, GeV$$

Pion response in FCAL

$$E_{\pi 1} + E_{\pi 2} = 5.5 \, GeV$$

Backgrounds: PRIMEX can provide guidance on backgrounds.

1. Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

Calculations by T. Rodrigues

2. Coherent $\gamma A \rightarrow f_0(600)$

3.
$$\gamma A \rightarrow \rho^0 A$$

4. $\gamma A \rightarrow e^+e^-A$

5. $\gamma A \rightarrow \mu^+ \mu^- A$

Backgrounds: PRIMEX can provide guidance on backgrounds.

Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

Calculations by S. Gevorkyan, $\gamma p \rightarrow \pi^0 \pi^0$ from RadPhi as a constraint 3. $\gamma A \rightarrow \rho^0 A$ 4. $\gamma A \rightarrow e^+e^- A$

5. $\gamma \mathbf{A} \rightarrow \mu^+ \mu - \mathbf{A}$

1. Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

3. $\gamma A \rightarrow \rho^0 A$

The nucleus acts as a filter for incoherent and coherent backgrounds. The nuclear effect will be even more pronounced for a $\pi\pi$ final state

4. $\gamma A \rightarrow e^+e^-A$

5. $\gamma A \rightarrow \mu^+ \mu - A$

1. Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

4. $\gamma A \rightarrow e^+e^-A$

W distribution of $\pi\pi$ events

1. Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

4. $\gamma A \rightarrow e^+e^-A$ dis

5. $\gamma A \rightarrow \mu^+ \mu - A$

Lab azimuthal distribution of $\pi\pi$ system (1+P $_{\gamma}$ cos2 ϕ)

1. Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

4. $\gamma A \rightarrow e^+e^-A$

Azimuthal distribution of π^+ in helicity frame (1+P $_{\gamma}$ cos2 ψ)

5. $\gamma A \rightarrow \mu^+ \mu - A$

Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$ is $\gamma A \rightarrow \rho^0 A$

4. γ**A**→**e**⁺**e**- **A**

5. $\gamma \mathbf{A} \rightarrow \mu^+ \mu - \mathbf{A}$

2. Coherent $\gamma A \rightarrow f_0(600)$

3.
$$\gamma A \rightarrow \rho^0 A$$

5. $\gamma A \rightarrow \mu^+ \mu - A$

Physics Backgrounds

Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$ is query $\gamma A \rightarrow \rho^0 A$

4. $\gamma A \rightarrow e^+e^-A$

Muon detector design

Concept:

Iron absorbers to initiate pion showers, followed by MWPC's to detect muons and shower products

Design work is in progress:

Developing Geant3 and Geant4 simulations of this geometery

Geant3 Simulations

1 GeV muon

1 GeV pion

Geant3 Simulations

2 GeV muon

2 GeV pion

Geant3 Simulations

3 GeV muon

3 GeV pion

Geant4 calculaton of dE/dx in the MWPCs

6/12/13

Number of hits in all MWPCs (8 layers)

Pion showers tend to be absorbed in iron, not necessarily leading to many hits in MWPCs

Conclusion: may need more sampling layers

6/12/13

Particle ID Summary

- Can't base particle ID on a single variable. Need to combine all sources of information about the event:
 - i. Particle momenta
 - ii. Energy in FCAL
 - iii. # hits in muon chambers
 - iv. track depths in muon chambers
 - v. x,y distribution of hits in muon chambers
- Use Multi-Variate Analysis (MVA) to to map the point in N-dimensional space to a probability value that can be used to classify the type of event.

MVA Classification Examples

Blue are π + events, red are μ + events

Multi-Variate Analysis for 2 GeV π + and μ +

 μ rejection at 0.998, π efficiency at 95%

Summary of the Muon System

- We conclude that a muon system based on MWPCs and iron absorbers + FCAL can deliver the $\pi/\mu/e$ separation required
- Need to optimize the size of the detector, the number of detector planes, the total iron thickness, and neural net/boosted decision tree algorithms
- Use MWPC's operating in proportional mode: cheap, relatively easy to construct, high eff. for MIP.
- Channel estimate: assume cell spacing = 4 cm, four MWPC packages with x, y planes, $2 \times 2 \text{ m}^2$, = 400 total cells.
- Electronics readout: borrow 25 FADC' modules + ancillary electronics + crates. Need a relatively cheap preamp card on the MWPC's.

The Road to $\sigma_{\gamma\gamma\to\pi\pi}$

1. Identify candidate events based on kinematic cuts

- a) $E_1 + E_2 = E_y$
- b) $0.3 < W_{12} < 0.5 GeV$
- c) $\Theta_{12} < 0.6^{\circ}$
- d) $\pi\pi$ = event with no identified muon
- e) $\mu\mu$ = event with at least one identified muon

2. Subtract backgrounds from yields

$$N_{\pi\pi} = N_{\pi\pi-candidate} - f_{bad-\mu\mu(\pi\pi)} N_{\mu\mu} + f_{bad-\pi\pi(\mu\mu)} N_{\pi\pi} - f_{bad-\pi\mu(\pi\pi)} f_{\pi\to\mu\nu} N_{\pi\pi}$$

$$N_{\mu\mu} = N_{\mu\mu-candidate} + f_{bad-\mu\mu(\pi\pi)} N_{\mu\mu} - f_{bad-\pi\pi(\mu\mu)} N_{\pi\pi} - f_{bad-\pi\mu(\mu\mu)} f_{\pi\to\mu\nu} N_{\pi\pi}$$

$$f_{\pi \to \mu \nu}$$
 = probability for pion decay = 8%

$$\emph{f}_{bad\text{-}\pi\pi(\mu\mu)}$$
 = probability for $\pi\pi$ event to ID as $\mu\mu$ event ~ 0.05

$$f_{bad-\mu\mu(\pi\pi)}$$
 = probability for $\mu\mu$ event to ID as $\pi\pi$ event ~ 0.002

$$f_{bad-\pi\mu(\pi\pi)}$$
 = probability for $\pi\mu$ event to ID as $\pi\pi$ event ~ 0.05

$$\emph{f}_{bad\text{-}\pi\mu(\mu\mu)}$$
 = probability for $\pi\mu$ event to ID as $\mu\mu$ event ~ 1

The Road to $\sigma_{\gamma\gamma\to\pi\pi}$

3. Azimuthal fits to pion yields

$$N_{\pi\pi} = N_{\text{Pr}\,\text{imakoff}} \left(1 + P_{\gamma} \cos 2\phi_{\pi\pi} \right) + N_{\rho}$$

$$N_{\pi\pi} = N_{\rho} \left(1 + P_{\gamma} \cos 2\psi \right) + N_{\text{Pr}\,\text{imakoff}}$$

4. Form ratio with muon yields

$$\frac{N_{\text{Pr}imakoff}}{N_{\mu\mu}} = \left| \frac{F_{\text{strong}}(q^2)}{F_{EM}(q^2)} \right|^2 \frac{(FDC \cdot TOF)_{\pi\pi}}{(FDC \cdot TOF)_{\mu\mu}} \times \frac{Trig_{\pi\pi}}{Trig_{\mu\mu}} \times (1 - f_{\pi \to \mu\nu}) \frac{CoulCorr_{\pi\pi}}{CoulCorr_{\mu\mu}} \left[\frac{\sigma_{\gamma\gamma \to \pi\pi}}{\sigma_{\gamma\gamma \to \mu\mu}} \right]$$

$$-4\% \qquad 0\% \qquad 0\% \qquad -8\% \qquad +1\%$$

$\gamma + \gamma \rightarrow \pi^+ + \pi^-$

Errors and correction factors	Correction factor	Uncertainty in correction
Overall statistical error		0.6%
$\pi\pi$ inefficiency	5%	.5%
μμ contamination	2%	.5%
$\pi\mu$ identified as $\pi\pi$	0.4%	small
πμ identified as μμ	0.8%	small
polarization	70%	0.5%
Strong form factor	4%	0.6%
Acceptance		0.5%
Trigger		0.5%
Coulomb correction	1%	0.5%
Total error		1.5%
Projected error in $lpha-eta$		$\pm 0.6 \times 10^{-4} \text{fm}^3$

Summary

- The charged pion polarizability has special status among hadron polarizabilities; the predicted value comes directly from $L_{QCD}(p^4)$. The NLO corrections to $\alpha-\beta$ are small.
- The charged pion polarizability ranks as one of the most important tests of low-energy QCD unresolved by experiment. The experimental value for α - β is poorly known.
- We have proposed to measure the charged pion polarizability $\alpha-\beta$ by measurement of $\gamma\gamma \rightarrow \pi^+\pi^-$ cross sections in the threshold region
- 20 days are requested for running, and 5 days for commissioning. The projected uncertainty in $\alpha-\beta$ is at the level of $\pm 0.6\times 10^{-4}$ fm⁴, equal to the PDG error on the proton electric polarizability.
- The experiment will utilize a muon counter/iron absorber system installed after FCAL, and a solid target installed near the upstream end of the GlueX magnet. The number of additional electronics channels, approx. 400.