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Theory for pion polarizability: 
QCD expansion in powers of quark field operators
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Primex result:
→7.80 eV ± 2.8%
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Either real or virtual  
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



Crossing symmetry (x    t): 
Compton scattering       →
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



Primakoff process: 
very low-t photoproduction A→A
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Pion Polarizability Measurements
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
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 5.7 
Prediction from ChPT and 
dispersion theory

 13

~ 200 events from Mark-II Sensitivity at ~20% level is 
typical for polarizability
measurements at Mainz, 
Saskatoon, MIT-Bates, and Lund, 
where absolute cross sections 
were measured. At JLab we will 
be measuring relative cross 
sections. 

 
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Proposed Detector Setup

9

Electron energy 12.0 GeV Peak polarization 76%

Electron current 50 nA on 20 m diamond Coherent/incoherent 0.32

Coherent peak 5.5‐6.0 GeV Target position 1 cm

Collimator 3.5 mm Target 116Sn, 5% RL

Muon chambers 
and iron shielding

Solid target



Muon response in FCAL Pion response in FCAL

E1 + E2 = 5.5 GeV E1 + E2 = 5.5 GeV

250 MeV
10

250 MeV

TRIGGER = FCAL, Eth = 250 MeV



1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A

Calculations by T. Rodrigues 

Solid blue curve is 
nuclear incoherent. 

Backgrounds: PRIMEX can provide guidance on backgrounds. 

PRIMEX Pb→0
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1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A

Calculations by S. Gevorkyan ,  
p→ from RadPhi as a constraint Dashed blue curve is 

nuclear coherent, green 
is interference term. 

PRIMEX Pb→0

Backgrounds: PRIMEX can provide guidance on backgrounds. 
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1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A

Backgrounds PRIMEX Carbon

The nucleus acts as a filter for 
incoherent and coherent 
backgrounds. The nuclear effect 
will be even more pronounced 
for a  final state

PRIMEX Lead
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W distribtution
of  events

Backgrounds

1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A
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Lab azimuthal 
distribution of 
 system 
(1+Pcos2)

Backgrounds

1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A
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Azimuthal 
distribution of 
in helicity frame 
(1+Pcos2)

Backgrounds

1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A
16



Backgrounds

1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A
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W=300 MeV

W=400 MeV

W=500 MeV



Backgrounds

1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A
18

0.995 e+e- rejection at 
99%  acceptance



Physics Backgrounds

1. Incoherent A→ X

2. Coherent A→ f0(600)

 A→ A 

 A→e+e- A

 A→ A
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Muon detector design

Concept: 
Iron absorbers to initiate pion showers, followed by 
MWPC’s to detect muons and shower products

Design work is in progress: 
Developing Geant3 and Geant4 simulations of this geometery

20 cm iron = 1 

MWPC packages 
(x,y planes)

 ()
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1 GeV muon 1 GeV pion

Geant3 Simulations

FCALMuon detectors



23

2 GeV muon 2 GeV pion

Geant3 Simulations

FCALMuon detectors
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3 GeV muon 3 GeV pion

Geant3 Simulations

FCALMuon detectors



Geant4 calculaton of dE/dx in the MWPCs

+ +

6/12/13 25



Number of hits in all MWPCs (8 layers)

Pion showers tend to be absorbed in iron, not necessarily leading 
to many hits in MWPCs
Conclusion: may need more sampling layers

6/12/13 26
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• Can’t base particle ID on a single variable. Need to combine all 
sources of information about the event:

i. Particle momenta

ii. Energy in FCAL

iii. # hits in muon chambers

iv. track depths in muon chambers

v. x,y distribution of hits in muon chambers

• Use Multi-Variate Analysis (MVA) to to map the point in N-
dimensional space to a probability value that can be used to 
classify the type of event.

Particle ID Summary



MVA Classification Examples

Boosted Decision Tree Neural Network

2GeV +/+ 2GeV +/+

Blue are + events, red are + events

6/12/13 28
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Multi-Variate Analysis for 2 GeV + and +

 rejection at 0.998,  efficiency at 95%  



• We conclude that a muon system based on MWPCs and iron 
absorbers + FCAL can deliver the e separation required

• Need to optimize the size of the detector, the number of detector
planes, the total iron thickness, and neural net/boosted decision
tree algorithms

• Use MWPC’s operating in proportional mode: cheap, relatively easy
to construct, high eff. for MIP.

• Channel estimate: assume cell spacing = 4 cm, four MWPC packages
with x, y planes, 2 x 2 m2, = 400 total cells.

• Electronics readout: borrow 25 FADC’ modules + ancillary
electronics + crates. Need a relatively cheap preamp card on the
MWPC’s.

Summary of the Muon System
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The Road to →

31

 NffNfNfNN badbadbadcandidate   )()()(

1. Identify candidate events based on kinematic cuts
a) E1+E2 = E

b) 0.3 < W12 < 0.5 GeV
c) 12 < 0.6°
d)  = event with no identified muon
e)  = event with at least one identified muon

2. Subtract backgrounds from yields

 NffNfNfNN badbadbadcandidate   )()()(

f→ = probability for pion decay = 8%
fbad- = probability for  event to ID as  event ~ 0.05
fbad- = probability for  event to ID as  event ~ 0.002
fbad- = probability for  event to ID as  event ~ 0.05
fbad- = probability for  event to ID as  event ~ 1
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The Road to →

3. Azimuthal fits to pion yields
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4. Form ratio with muon yields
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Errors and correction factors Correction factor Uncertainty in 
correction

Overall statistical error 0.6%

 inefficiency 5% .5%

 contamination 2% .5%

 identified as  0.4% small

 identified as  0.8% small
polarization 70% 0.5%
Strong form factor 4% 0.6% 
Acceptance 0.5%
Trigger 0.5%
Coulomb correction 1% 0.5%
Total error 1.5%

Projected error in  ± 0.6 × 10‐4 fm3
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Summary
• The charged pion polarizability has special status among hadron 

polarizabilities; the predicted value comes directly from LQCD(p4). The 
NLO corrections to  are small.

• The charged pion polarizability ranks as one of the most important tests 
of low-energy QCD unresolved by experiment. The experimental value 
for  is poorly known. 

• We have proposed to measure the charged pion polarizability  by 
measurement of → cross sections in the threshold region

• 20 days are requested for running, and 5 days for commissioning. The 
projected uncertainty in  is at the level of ±0.6×10-4 fm4,  equal to 
the PDG error on the proton electric polarizability.

• The experiment will utilize a muon counter/iron absorber system 
installed after FCAL, and a solid target installed near the upstream end 
of the GlueX magnet.  The number of additional electronics channels, 
approx. 400. 
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