Running jobs on the grid

From GlueXWiki
Jump to: navigation, search

Note on this page

The contents of this page were last updated in 2011. As of May 2014, the contents of Using the Grid supersedes this page.


This page is to be used for documenting the recent work done with getting jobs to run on the open science grid [1]. The following are the steps and issues encountered. A HowTo exists for getting started running jobs on the grid. You should look there for instructions and examples of how to do what is being done here.

One of the goals for using the open science grid (OSG) is to have a large set of generic background MC that may be used for various analyses. Ideally, this MC set may be re-generated easily whenever a major update occurs in the hall D simulation and reconstruction code. The most efficient way to store this data right now is to keep only the reconstructed hddm files, which may be analyzed with hall D or your own analysis code on the grid. The resultant root files can then be downloaded to a local machine.

The following steps are general, but are used in the analysis of γp -> π+ π- π+ n.

We begin by building the hall D source code and any analysis code on a designated space on the grid. In this particular instance, that space is /nfs/direct/apps/Gluex/pi-pi-pi-n. You should note that bggen and any necessary plugins (danahddm) must be built in addition to the hall D source code. This can be done using submission and executable files like those you can find on the HowTo.

Once the source code is built, we use an executable called (plus two arguments - random number seed and number of generated events) to run bggen, hdgeant and mcsmear. The resultant hdgeant_smeared.hddm file is sent to the grid storage space (maybe this is unnecessary). Afterwards, this executable links into the next, called, which runs the hd_ana program with the danahddm plugin. This is an empty analysis, but the result is that the reconstructed events is saved to a new file called dana_events.hddm, which is sent to storage. Again, this links into another executable,, which runs my specific analysis program and outputs and saves a root file. All unnecessary output is destroyed.

Once all outstanding issues have been addressed, we would like to generate some realistic background samples. The total cross section for Gluex is about 124 µb. The 3π channel has a cross section of about 3.2 µb(gluex-doc-856-v1). With a photon beam flux of 107/s and cross sectional area of the target of 1.26 b-1, a bggen sample size of 30 million events (signal size of about 800,000 events) equates to about 104 s of run time. We decided we will run 600 jobs of 50,000 events each.

Outstanding Issues